Orchestrating Workflows with AWS Step Functions
Introduction
AWS Step Functions allow composing serverless functions into fault-tolerant workflows with visual monitoring.
Prerequisites
- AWS CLI configured
- State Machine IAM role
Step 1: Define State Machine
Create state-machine.json
:
{
"Comment": "Example Step Function",
"StartAt": "TaskA",
"States": {
"TaskA": {
"Type": "Task",
"Resource": "arn:aws:lambda:us-east-1:123456789012:function:TaskA",
"Next": "ChoiceState"
},
"ChoiceState": {
"Type": "Choice",
"Choices": [
{"Variable": "$.status","StringEquals": "SUCCESS","Next": "TaskB"}
],
"Default": "FailState"
},
"TaskB": {"Type":"Task","Resource":"arn:aws:lambda:us-east-1:123456789012:function:TaskB","End":true},
"FailState": {"Type":"Fail","Cause":"Task A failed"}
}
}
Step 2: Create State Machine
aws stepfunctions create-state-machine \
--name MyStateMachine \
--definition file://state-machine.json \
--role-arn arn:aws:iam::123456789012:role/StepFunctionsRole
Step 3: Execute and Monitor
Start execution:
aws stepfunctions start-execution --state-machine-arn arn:aws:states:us-east-1:123456789012:stateMachine:MyStateMachine
Monitor in Step Functions console for graphical view.
Summary
Step Functions enable robust orchestration with retries, error handling, and parallelism using JSON-defined state machines.